miércoles, 25 de noviembre de 2009

Teoria Geocentrica

La Teoría geocéntrica es una antigua teoría de ubicación de la Tierra en el Universo. Coloca la Tierra en el centro del Universo, y los astros, incluido el Sol, girando alrededor de ella (geo: Tierra; centrismo: centro). Creer que la Tierra es el centro del universo es la opinión obvia de quien no se plantea hallar una solución a los problemas que presentan los movimientos de los cuerpos celestes, esto es, los movimientos de los planetas. El geocentrismo estuvo vigente en las más remotas civilizaciones. Por ejemplo, en Babilonia era ésta la visión del universo [1] y en su versión completada por Claudio Ptolomeo en el siglo II en su obra El Almagesto, en la que introdujo los llamados epiciclos, ecuantes y deferentes, estuvo en vigor hasta el siglo XVI cuando fue reemplazada por la teoría heliocéntrica.

Teoria Heliocentrica

La Teoría heliocéntrica es la que sostiene que la Tierra y los demás planetas giran alrededor del Sol. El heliocentrismo, fue propuesto en la antigüedad por el griego Aristarco de Samos (310 a. C. - 230 a. C.), quien se basó en medidas sencillas de la distancia entre la Tierra y el Sol, determinando un tamaño mucho mayor para el Sol que para la Tierra. Por esta razón, Aristarco propuso que era la Tierra la que giraba alrededor del Sol y no a la inversa, como sostenía la teoría geocéntrica de Ptolomeo e Hiparco, comúnmente aceptada en esa época y en los siglos siguientes, acorde con la visión antropocéntrica imperante.Más de un milenio más tarde, en el siglo XVI, la teoría volvería a ser formulada, esta vez por Nicolás Copérnico, uno de los más influyentes astrónomos de la historia, con la publicación en 1543 del libro De Revolutionibus Orbium Coelestium. La diferencia fundamental entre la propuesta de Aristarco en la antigüedad y la teoría de Copérnico es que este último emplea cálculos matemáticos para sustentar su hipótesis. Precisamente a causa de esto, sus ideas marcaron el comienzo de lo que se conoce como la revolución científica. No sólo un cambio importantísimo en la astronomía, sino en las ciencias en general y particularmente en la cosmovisión de la civilización. A partir de la publicación de su libro y la refutación del sistema geocéntrico defendido por la astronomía griega, la civilización rompe con la idealización del saber incuestionable de la antigüedad y se lanza con mayor ímpetu en busca del conocimiento.

Ley de Kepler

Leyes De Kepler...
Las leyes de Kepler fueron enunciadas por
Johannes Kepler para explicar el movimiento de los planetas en sus órbitas alrededor del Sol. Aunque él no las enunció en el mismo orden, en la actualidad las leyes se numeran como sigue:Primera Ley (1609): Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas, estando el Sol situado en uno de los focos.Segunda Ley (1609): El radio vector que une el planeta y el Sol barre áreas iguales en tiempos iguales.La ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio). En el afelio y en el perihelio, el momento angular L es el producto de la masa del planeta, su velocidad y su distancia al centro del Sol.Tercera Ley (1618): Para cualquier planeta, el cuadrado de su período orbital (tiempo que tarda en dar una vuelta alrededor del Sol) es directamente proporcional al cubo de la distancia media con el Sol.donde, T es el periodo orbital, r la distancia media del planeta con el Sol y K la constante de proporcionalidad.Estas leyes se aplican a otros cuerpos astronómicos que se encuentran en mutua influencia gravitatoria como el sistema formado por la Tierra y la Luna.

Contribucion de Ptolomeo.

SISTEMA DE PTOLOMEO:En el sistema Ptolemaico, cada planeta es movido por dos o más esferas: una esfera es su deferente que se centra en la tierra, y la otra esfera es el epiciclo que se encaja en el deferente. El planeta se encaja en la esfera del epiciclo. El deferente rota alrededor de la tierra mientras que el epiciclo rota dentro del deferente, haciendo que el planeta se acerque y se aleje de la tierra en diversos puntos en su órbita, inclusive haciendo que disminuya su velocidad, se detenga, y se mueva en el sentido contrario (en movimiento retrógrado). Los epiciclos de Venus y de Mercurio están centrados siempre en una línea entre la Tierra y el Sol (Mercurio más cercano a la Tierra), lo que explica porqué siempre se encuentran cerca de él en el cielo. El orden de las esferas Ptolemaicas a partir de la Tierra es:LunaMercurioVenusSolMarteJúpiterSaturnoEstrellas fijasEl modelo del deferente-y-epiciclo había sido utilizado por los astrónomos griegos por siglos, como lo había sido la idea del excéntrico (un deferente levemente desviado del centro de la Tierra). En la ilustración, el centro del deferente no es la Tierra sino la X, haciéndolo excéntrico (del Latín ex- o e- que significa "de," y centrum que significa "centro").Desafortunadamente, el sistema que estaba vigente en la época de Ptolomeo no concordaba con las mediciones, aún cuando había sido una mejora considerable respecto al sistema de Aristóteles. Algunas veces el tamaño del giro retrógrado de un planeta (más notablemente el de Marte) era más pequeño y a veces más grande. Esto lo impulsó a generar la idea de un ecuante.El ecuante era un punto cerca del centro de la órbita del planeta en el cual, si uno se paraba allí y miraba, el centro del epiciclo del planeta parecería que se moviera a la misma velocidad. Por lo tanto, el planeta realmente se movía a diferentes velocidades cuando el epiciclo estaba en diferentes posiciones de su deferente. Usando un ecuante, Ptolomeo afirmaba mantener un movimiento uniforme y circular, pero a muchas personas no les gustaba porque pensaban que no concordaba con el dictado de Platón de un "movimiento circular uniforme". El sistema resultante, el cual eventualmente logró amplia aceptación en occidente, fue visto como muy complicado a los ojos de la modernidad; requería que cada planeta tuviera un epiciclo girando alrededor de un deferente, desplazado por un ecuante diferente para cada planeta. Pero el sistema predijo varios movimientos celestes, incluyendo el inicio y fin de los movimientos retrógrados, medianamente bien para la época en que se desarrolló.

Sistema Coperniano

En 1543 la teoría geocéntrica enfrentó su primer cuestionamiento serio con la publicación de De Revolutionibus Orbium Coelestium de Copérnico, que aseguraba que la Tierra y los demás planetas, contrariamente a la doctrina oficial del momento, rotaban alrededor del Sol. Sin embargo, el sistema geocéntrico se mantuvo varios años, ya que el sistema copernicano no ofrecía mejores predicciones de las efemérides cósmicas que el anterior, y además suponía un problema para la filosofía natural, así como para la educación religiosa.Con la invención del telescopio en 1609 y las primeras observaciones realizadas con él por Galileo (como el hecho de que Júpiter tuviese lunas) cuestionaban el geocentricismo de manera colateral, pero no suponían ninguna amenaza seria para la teoría en su conjunto.Sin embargo, en diciembre de 1610, Galileo usó su telescopio para mostrar que Venus tiene fases, igual que la Luna. Estas observaciones eran incompatibles con el sistema tolemaico. Tolomeo colocaba a Venus dentro de la esfera del Sol (entre el Sol y Mercurio) de un modo arbitrario; del mismo modo podría haber intercambiado Venus y Mercurio y ponerlos al otro lado del Sol, o hecho cualquier otro arreglo con estos planetas, siempre que estuvieran cerca de una línea que fuese desde la Tierra a través del Sol.Si el Sol es la fuente de toda la luz, bajo el sistema tolemaico:si Venus estuviera entre la Tierra y el Sol, la fase de Venus debería ser siempre creciente pero con menos de la mitad del planeta a la vista, o nueva.si Venus estuviera tras el Sol, la fase de Venus debería ser siempre creciente desde la mitad en adelante o llena.Pero Galileo vio Venus al principio pequeño y lleno, y más tarde más grande y creciente.Los astrónomos de este período vieron el resultado de este hecho insalvable para la cosmología tolemaica, si el resultado se hubiera aceptado como cierto. Como resultado, a finales del siglo XVII la competición entre las dos cosmologías se centraba en las variaciones de Tycho Brahe (en las que la Tierra era todavía el centro del Universo, y alrededor suyo giraba el Sol, pero todos los demás planetas giraban alrededor del Sol), o variaciones del sistema copernicano.

Newton y la Ley gravitacion universal

Newton y la ley de Gravitacion Universal...
Bernard Cohen afirma que “El momento culminante de la Revolución científica fue el descubrimiento realizado por Isaac Newton de la ley de la gravitación universal.” Con una simple ley, Newton dio a entender los fenómenos físicos más importantes del universo observable, explicando las tres leyes de Kepler. La ley de la gravitación universal descubierta por Newton se escribe,donde F es la fuerza, G es una constante que determina la intensidad de la fuerza y que sería medida años más tarde por Henry Cavendish en su célebre experimento de la balanza de torsión, m1 y m2 son las masas de dos cuerpos que se atraen entre sí y r es la distancia entre ambos cuerpos, siendo el vector unitario que indica la dirección del movimiento (si bien existe cierta polémica acerca de que Cavendish hubiera medido realmente G, pues algunos estudiosos afirman que simplemente midió la masa terrestre).La ley de gravitación universal nació en 1685 como culminación de una serie de estudios y trabajos iniciados mucho antes. En 1679 Robert Hooke introdujo a Newton en el problema de analizar una trayectoria curva. Cuando Hooke se convirtió en secretario de la Royal Society quiso entablar una correspondencia filosófica con Newton. En su primera carta planteó dos cuestiones que interesarían profundamente a Newton. Hasta entonces científicos y filósofos como Descartes y Huygens analizaban el movimiento curvilíneo con la fuerza centrífuga, sin embargo Hooke proponía “componer los movimientos celestes de los planetas a partir de un movimiento rectilíneo a lo largo de la tangente y un movimiento atractivo, hacia el cuerpo central.” Sugiere que la fuerza centrípeta hacia el Sol varía en razón inversa al cuadrado de las distancias. Newton contesta que él nunca había oído hablar de estas hipótesis.En otra carta de Hooke, escribe: “Nos queda ahora por conocer las propiedades de una línea curva... tomándole a todas las distancias en proporción cuadrática inversa.” En otras palabras, Hooke deseaba saber cuál es la curva resultante de un objeto al que se le imprime una fuerza inversa al cuadrado de la distancia. Hooke termina esa carta diciendo: “No dudo que usted, con su excelente método, encontrará fácilmente cuál ha de ser esta curva.”En 1684 Newton informó a su amigo Edmund Halley de que había resuelto el problema de la fuerza inversamente proporcional al cuadrado de la distancia. Newton redactó estos cálculos en el tratado “De Motu” y los desarrolló ampliamente en el libro “Philosophiae naturalis principia mathematica”. Aunque muchos astrónomos no utilizaban las leyes de Kepler, Newton intuyó su gran importancia y las engrandeció demostrándolas a partir de su ley de la gravitación universal.Sin embargo, la gravitación universal es mucho más que una fuerza dirigida hacia el Sol. Es también un efecto de los planetas sobre el Sol y sobre todos los objetos del Universo. Newton intuyó fácilmente a partir de su tercera ley de la dinámica que si un objeto atrae a un segundo objeto, este segundo también atrae al primero con la misma fuerza. Newton se percató de que el movimiento de los cuerpos celestes no podía ser regular. Afirmó: “los planetas ni se mueven exactamente en elipses, ni giran dos veces según la misma órbita”. Para Newton, ferviente religioso, la estabilidad de las órbitas de los planetas implicaba reajustes continuos sobre sus trayectorias impuestas por el poder divino.

Cosmologia


Es la ciencia que estudia la historia y la estructura del Universo en su totalidad.El nacimiento de la cosmología moderna puede situarse en 1700 con la hipótesis que las estrellas de la Vía Láctea (la franja de luz blanca visible en las noches serenas de un extremo a otro de la bóveda celeste), pertenecen a un sistema estelar de forma discoidal, del cual el propio Sol forma parte; y que otros cuerpos nebulosos visibles con el telescopio son sistemas estelares similares a la Vía Láctea, pero muy lejanos.Estas consideraciones, junto con las determinaciones de los paralajes estelares, y por lo tanto de las distancias de las estrellas a nosotros, ampliaron enormemente los confines del Universo, que las cosmologías clásicas y medievales habían limitado a nuestro sistema solar.Correspondió al gran astrónomo Sir William Herschel (1738-1822) demostrar, a través de cálculos estelares, que la hipótesis de los cosmólogos más importantes del siglo diecisiete eran correctas. Alrededor de un siglo después, otro gran avance a la comprensión de nuestra situación en la Galaxia fue aportado por el astrónomo Harlow Sharpley quien, en 1918, pudo calcular que el Sol no ocupa una posición central, sino periférica.Sólo hacia mediados del siglo XX, en cambio, se han tenido las pruebas de que nuestra Galaxia tiene forma de espiral y que, un observador externo, la vería como se nos aparece a nosotros la nebulosa de Andrómeda

Formación y evolución del Sistema Solar

Las teorías concernientes a la formación y evolución del Sistema Solar son variadas y complejas, involucrando varias disciplinas científicas, desde la astronomía y la física hasta la geología y la ciencia planetaria. A través de los siglos se han desarrollado muchas teorías sobre su formación pero no fue sino hasta el siglo XVIII que el desarrollo de la teoría moderna tomó forma. Con la llegada de la era espacial las imágenes y estructuras de otros mundos en el sistema solar refinaron nuestra comprensión, mientras que los avances en física nuclear nos dieron un primer vistazo a los procesos sostenidos por las estrellas y nos guiaron hacia las primeras teorías sobre su formación y posteriormente, sobre su destrucción.

Planetas






















Mercurio:Es el planeta más cercano al Sol y el segundo más pequeño del Sistema Solar. Mercurio es menor que la Tierra, pero más grande que la Luna.Cuando un lado de Mercurio está de cara al Sol, llega a temperaturas superiores a los 425 ºC. Las zonas en sombra bajan hasta los 170 bajo cero. Los polos se mantienen siempre muy fríos. Esto lleva a pensar que puede haber agua (congelada, claro).
La superficie de Mercurio es semejante a la de la Luna. El paisaje está lleno de cráteres y grietas, en medio de marcas ocasionadas por los impactos de los meteoritos.
La presencia de campo magnético indica que Mercurio tiene un núcleo metálico, parcialmente líquido. Su alta densidad, la misma que la de la Tierra, indica que este núcleo ocupa casi la mitad del volumen del planeta.



Venus: Es el segundo planeta del Sistema Solar y el más semejante a La Tierra por su tamaño, masa, densidad y volumen. Los dos se formaron en la misma época, a partir de la misma nebulosa.Sin embargo, es diferente de la Tierra. No tiene océanos y su densa atmósfera provoca un efecto invernadero que eleva la temperatura hasta los 480 ºC. Es abrasador.Los primeros astrónomos pensaban que Venus eran dos cuerpos diferentes porque, unas veces se ve un poco antes de salir el Sol y, otras, justo después de la puesta.Venus gira sobre su eje muy lentamente y en sentido contrario al de los otros planetas. El Sol sale por el oeste y se pone por el este, al revés de lo que ocurre en La Tierra. Además, el día en Venus dura más que el año.






Tierra:Es nuestro planeta y el único habitado. Está en la ecosfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida.La Tierra es el mayor de los planetas rocosos. Eso hace que pueda retener una capa de gases, la atmósfera, que dispersa la luz y absorbe calor. De día evita que la Tierra se caliente demasiado y, de noche, que se enfríe.Siete de cada diez partes de la superficie terrestre están cubiertas de agua. Los mares y océanos también ayudan a regular la temperatura. El agua que se evapora forma nubes y cae en forma de lluvia o nieve, formando rios y lagos. En los polos, que reciben poca energía solar, el agua se hiela y forma los casquetes polares. El del sur és más grande y concentra la mayor reserva de agua dulce.La Tierra no es una esfera perfecta, sino que tiene forma de pera. Cálculos basados en las perturbaciones de las órbitas de los satélites artificiales revelan que el ecuador se engrosa 21 km; el polo norte está dilatado 10 m y el polo sur está hundido unos 31 metros.



Marte:Es el cuarto planeta del Sistema Solar. Conocido como el planeta rojo por sus tonos rosados, los romanos lo identificaban con la sangre y le pusieron el nombre de su dios de la guerra.El planeta Marte tiene una atmósfera muy fina, formada principalmente por dióxido de carbono, que se congela alternativamente en cada uno de los polos. Contiene sólo un 0,03% de agua, mil veces menos que la Tierra.Los estudios demuestran que Marte tuvo una atmósfera más compacta, con nubes y precipitaciones que formaban rios. Sobre la superficie se adivinan surcos, islas y costas. Las grandes diferencias de temperatura provocan vientos fuertes. La erosión del suelo ayuda a formar tempestades de polvo y arena que degradan todavía más la superficie.







Júpiter:Es el planeta más grande del Sistema Solar, tiene más materia que todos los otros planetas juntos y su volumen es mil veces el de la Tierra.Júpiter tiene un tenue sistema de anillos, invisible desde la Tierra. También tiene 16 satélites. Cuatro de ellos fueron descubiertos por Galileo en 1610. Era la primera vez que alguien observaba el cielo con un telescopio.Júpiter tiene una composición semejante a la del Sol, formada por hidrógeno, helio y pequeñas cantidades de amoníaco, metano, vapor de agua y otros compuestos.La rotación de Jupiter es la más rápida entre todos los planetas y tiene una atmósfera compleja, con nubes y tempestades. Por ello muestra franjas de diversos colores y algunas manchas.






Saturno:Saturno es el segundo planeta más grande del Sistema Solar y el único con anillos visibles desde la Tierra. Se ve claramente achatado por los polos a causa de la rápida rotación.La atmósfera es de hidrógeno, con un poco de helio y metano. Es el único planeta que tiene una densidad menor que el agua. Si encontrásemos un océano suficientemente grande, Saturno flotaría.El color amarillento de las nubes tiene bandas de otros colores, como Júpiter, pero no tan marcadas. Cerca del ecuador de Saturno el viento sopla a 500 Km/h.Los anillos le dan un aspecto muy bonito. Tiene dos brillantes, A y B, y uno más suave, el C. Entre ellos hay aberturas. La mayor es la División de Cassini.




Urano:Es el septimo planeta desde el Sol y el tercero más grande del Sistema Solar. Urano es también el primero que se descubrió grcias al telescopio.La atmósfera de Urano está formada por hidrógeno, metano y otros hidrocarburos. El metano absorbe la luz roja, por eso refleja los tonos azules y verdes.Urano está inclinado de manera que el ecuador hace casi ángulo recto, 98 º, con la trayectoria de la órbita. Esto hace que en algunos momentos la parte más caliente, encarada al Sol, sea uno de los polos.Su distancia al Sol es el doble que la de Saturno. Está tan lejos que, desde Urano, el Sol parece una estrella más. Aunque, mucho más brillante que las otras.






Neptuno:Es el planeta más exterior de los gigantes gaseosos y el primero que fue descubierto gracias a predicciones matemáticas.El interior de Neptuno es roca fundida con agua, metano y amoníaco líquidos. El exterior es hidrógeno, helio, vapor de agua y metano, que le da el color azul.Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. La más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra.Los vientos más fuertes de cualquier planeta del Sistema Solar son los de Neptuno. Muchos de ellos soplan en sentido contrario al de rotación. Cerca de la Gran Mancha Oscura se han medido vientos de 2.000 Km/h.







Plutón:Es el planeta más pequeño (ahora, ex-planeta) y el que se aleja más del Sol. Se descubrió en 1930, pero está tan lejos que, de momento, tenemos poca información. Es el único que todavía no ha sido visitado por una nave terrestre.Generalmente, Plutón es el planeta más lejano. Pero su órbita es muy excéntrica y, durante 20 de los 249 años que tarda en hacerla, está más cerca del Sol que Neptuno.La órbita de Plutón también es la más inclinada, 17º. Por eso no hay peligro de que se encuentre con Neptuno. Cuando las órbitas se cruzan lo hacen cerca de los extremos. En vertical, les separa una distancia enorme.Hizo la máxima aproximación en septiembre de 1989 y siguió en la órbita de Neptuno hasta marzo de 1999. Ahora se aleja y no volverá a cruzar esta órbita hasta septiembre del 2226.En la Asamblea General de la Unión Astronómica Internacional (UAI) celebrada en Praga el 24 de agosto de 2006 se creó una nueva categoría llamada plutoide, en la que se incluye a Plutón.



Cometas:Los hombres primitivos ya conocían los cometas. Los más brillantes se ven muy bien y no se parecen a ningún otro objeto del cielo.Parecen manchas de luz, a menudo borrosas, que van dejando un rastro o cabellera. Esto los hace atractivos y los rodea de magia y misterio. Los cometas son cuerpos frágiles y pequeños, de forma irregular, formados por una mezcla de substancias duras y gases congelados.Un cometa consta de un núcleo, de hielo y roca, rodeado de una atmósfera nebulosa llamada cabellera o coma. El astrónomo estadounidense Fred Whipple describió en 1949 el núcleo, que contiene casi toda la masa del cometa, como una "bola de nieve sucia" compuesta por una mezcla de hielo y polvo.La mayor parte de los gases que se expulsan para formar la cabellera son moléculas fragmentarias o radicales de los elementos más comunes en el espacio: hidrógeno, carbono, nitrógeno y oxígeno.La cabeza de un cometa, incluida su difusa cabellera, puede ser mayor que el planeta Júpiter. Sin embargo, la parte sólida de la mayoría de los cometas tiene un volumen de algunos kilómetros cúbicos solamente. Por ejemplo, el núcleo oscurecido por el polvo del cometa Halley tiene un tamaño aproximado de 15 por 4 kilómetros.




Las órbitas de los cometas se desvían bastante de las previstas por las leyes de Newton. Esto puede ser debido a que el escape de gases produce una propulsión a chorro que desplaza ligeramente el núcleo de un cometa fuera de su trayectoria.Los cometas de periodos cortos, observados a lo largo de muchas órbitas, tienden a desvanecerse con el tiempo como podría esperarse. Por último, la existencia de grupos de cometas demuestra que los núcleos cometarios son unidades sólidas.En general, la órbita de los cometas es mucho más alargada que la de los planetas. En una punta los pueden acercar al Sol y, en la otra, alejarlos más allá de la órbita de Plutón.Cuando los cometas se acercan al Sol y se calientan, los gases se evaporan, desprenden partículas sólidas y forman la cabellera. Cuando se vuelven a alejar, se enfrían, los gases se hielan y la cola desaparece.En cada pasada pierden materia. Finalmente, sólo queda el núcleo rocoso. Se cree que hay asteroides que son nucleos pelados de cometas.





Hay cometas con periodos orbitales cortos y, otros, largos. Los hay que no superan nunca la órbita de Júpiter y otros que se alejan mucho, hasta que abandonan el Sistema Solar y ya no vuelven.










Asteroides:Son una serie de objetos rocosos o metálicos que orbitan alrededor del Sol, la mayoría en el cinturón principal, entre Marte y Júpiter.Algunos asteroides, sin embargo, tienen órbitas que van más allá de Saturno, otros se acercan más al Sol que la Tierra. Algunos han chocado contra nuestro planeta. Cuando entran en la atmosfera, se encienden y se transforman en meteoritos.A los asteroides también se les llama planetas menores. El más grande es Ceres, con 1.000 Km. de diámetro. Después, Vesta y Pallas, con 525. Se han encontrado 16 que superan los 240 Km., y muchos pequeños. Gaspra, el de la foto lateral, no llega a los 35 km de punta a punta, mientras que Ida, abajo, tiene unos 115 Km.





Meteoro:Meteoro es un fenómeno luminoso consistente en un cuerpo celeste de apariencia estelar que se desplaza sobre el fondo del cielo oscuro, a veces dejando detrás una estela persistente. Su definición popular es la de estrella fugaz.Un meteoro no debe confundirse con un Meteorito, mientras el primero consiste en el fenómeno luminoso, el segundo es un cuerpo sólido más o menos grande que provoca el fenómeno luminoso mismo.Los meteoros más luminosos, que superan la magnitud estelar de -4m llegando hasta -22m, son habitualmente llamados bólidos o bolas de fuego.Los meteoros se forman cuando un meteorito que se encuentra en el espacio entra en la atmósfera terrestre y, por efecto de la fricción, se quema en las capas altas de la atmósfera.



La Luna: es el único satélite natural de la Tierra. Su diámetro es de unos 3.476 km, aproximadamente una cuarta parte del de la Tierra. La masa de la Tierra es 81 veces mayor que la de la Luna. La densidad media de la Luna es de sólo las tres quintas partes de la densidad de la Tierra, y la gravedad en la superficie es un sexto de la de la Tierra.La Luna orbita la Tierra a una distancia media de 384.403 km y a una velocidad media de 3.700 km/h. Completa su vuelta alrededor de la Tierra, siguiendo una órbita elíptica, en 27 días, 7 horas, 43 minutos y 11,5 segundos. Para cambiar de una fase a otra similar, o mes lunar, la Luna necesita 29 días, 12 horas, 44 minutos y 2,8 segundos.Como tarda en dar una vuelta sobre su eje el mismo tiempo que en dar una vuelta alrededor de la Tierra, siempre nos muestra la misma cara. Aunque parece brillante, sólo refleja en el espacio el 7% de la luz que recibe del Sol.Después de la Tierra, la Luna es el cuerpo espacial más estudiado.
El origen de la luna: Hay, básicamente, tres teorias sobre el origen de la luna:1.- Era un astro independiente que, al pasar cerca de la Tierra, quedó ...Movimientos de la Luna: La Luna es el único satélite natural de la Tierra. La luna gira alrededor de su eje (rotación) en aproximadamente 27.32 días
Las fases de la luna: Según la disposición de la Luna, la Tierra y el Sol, se ve iluminada una mayor o menor porción de la cara visible
Los eclipses: Un eclipse es el oscurecimiento de un cuerpo celeste por otro. Como los cuerpos celestes no están quietos en el firmamento, a veces la sombra ...
La superficie lunar: La Luna es un mundo lleno de montañas, cráteres y otras formaciones. Los cráteres lunares se formaron por el impacto de meteoritos. ...
La observación de la Luna: Observar la luna no es difícil, ya que es el cuerpo astronómico más cercano a la Tierra. Con un pequeño telescopio Humanos en la Luna: Los alunizajes con éxito de las sondas espaciales no tripuladas de la serie americana Surveyor y de la soviética Luna.



El Sol:Es la estrella más cercana a la Tierra y el mayor elemento del Sistema Solar. Las estrellas son los únicos cuerpos del Universo que emiten luz. El Sol es también nuestra principal fuente de energía, que se manifesta, sobre todo, en forma de luz y calor.El Sol contiene más del 99% de toda la materia del Sistema Solar. Ejerce una fuerte atracción gravitatoria sobre los planetas y los hace girar a su alrededor.El Sol se formó hace 4.650 millones de años y tiene combustible para 5.000 millones más. Después, comenzará a hacerse más y más grande, hasta convertirse en una gigante roja. Finalmente, se hundirá por su propio peso y se convertirá en una enana blanca, que puede tardar un trillón de años en enfriarse.




Satélites:Cuerpos menores del sistema solar que se desplazan alrededor de los planetas.Existen planetas con un numeroso cortejo de satélites como Júpiter y Saturno, planetas con un solo satélite como la Tierra, alrededor de la cual orbita la Luna, y planetas carentes de satélites como Venus.El movimiento de la mayor parte de los satélites conocidos del Sistema Solar alrededor de sus planetas es directo, es decir, de oeste a este y en la misma dirección que giran sus planetas. Solamente ciertos satélites de grandes planetas exteriores giran en sentido inverso, es decir, de este a oeste y en dirección contraria a la de sus planetas; probablemente fueron capturados por los campos gravitatorios de los planetas algún tiempo después de la formación del Sistema Solar.Muchos astrónomos creen que Plutón, que se mueve en una órbita independiente alrededor del Sol, pudo haberse originado como satélite de Neptuno; recientemente se ha descubierto que el mismo Plutón tiene un satélite, Caronte.



Galaxia: enorme conjunto de cientos o miles de millones de estrellas, todas interaccionando gravitatoriamente y orbitando alrededor de un centro común. Todas las estrellas visibles a simple vista desde la superficie terrestre pertenecen a nuestra galaxia, la Vía Láctea. El Sol es solamente una estrella de esta galaxia. Además de estrellas y planetas, las galaxias contienen cúmulos de estrellas, hidrógeno atómico, hidrógeno molecular, moléculas complejas compuestas de hidrógeno, nitrógeno, carbono y silicio entre otros elementos, y rayos cósmicos. Nuestra galaxia, la Vía Láctea, sólo es una de los varios cientos de millones de galaxias visibles mediante los potentes telescopios modernos.



Estrella: gran cuerpo celeste compuesto de gases calientes que emiten radiación electromagnética, en especial luz, como resultado de las reacciones nucleares que tienen lugar en su interior. El Sol es una estrella. Con la única excepción del Sol, las estrellas parecen estar fijas, manteniendo la misma forma en los cielos año tras año. En realidad, las estrellas están en rápido movimiento, pero a distancias tan grandes que sus cambios relativos de posición se perciben sólo a través de los siglos.La estrella más cercana a nuestro Sistema Solar es Próxima Centauri, uno de los componentes de la estrella triple Alpha Centauri, que está a unos 40 billones de km de la Tierra. En términos de velocidad de la luz, este sistema de estrella triple está a unos 4,29 años luz.El brillo de las estrellas se describe en términos de magnitud. Las estrellas más brillantes pueden ser hasta 1.000.000 de veces más brillantes que el Sol.



Nebulosas:Las nebulosas (nebula singular, nebulae plural, en latín e inglés) son regiones del medio interestelar constituidas por gases (principalmente hidrógeno y helio) y polvo. Tienen una importancia cosmológica notable porque muchas de ellas son los lugares donde nacen las estrellas por fenómenos de condensación y agregación de la materia; en otras ocasiones se trata de los restos de estrellas ya extintas.Las nebulosas asociadas con estrellas jóvenes se localizan en los discos de las galaxias espirales y en cualquier zona de las galaxias irregulares, pero no se suelen encontrar en galaxias elípticas puesto que éstas apenas poseen fenómenos de formación estelar y están dominadas por estrellas muy viejas. El caso extremo de una galaxia con muchas nebulosas sufriendo intensos episodios de formación estelar se denomina galaxia starburst.Antes de la invención del telescopio, el término «nebulosa» se aplicaba a todos los objetos celestes de apariencia difusa. Por esta razón, a veces las galaxias (conjunto de miles de millones de estrellas, gas y polvo unidos por la gravedad) son llamadas impropiamente nebulosas; se trata de una herencia de la Astronomía de siglo XIX que ha dejado su signo en el lenguaje astronómico contemporáneo.




Agujeros negros Son cuerpos con un campo gravitatorio extraordinariamente grande.No puede escapar ninguna radiación electromagnética ni luminosa, por eso son negros. Están rodeados de una "frontera" esférica que permite que la luz entre pero no salga.Hay dos tipos de agujeros negros: cuerpos de alta densidad y poca masa concentrada en un espacio muy pequeño, y cuerpos de densidad baja pero masa muy grande, como pasa en los centros de las galaxias.Si la masa de una estrella es más de dos veces la del Sol, llega un momento en su ciclo en que ni tan solo los neutrones pueden soportar la gravedad. La estrella se colapsa y se convierte en agujero negro.

Tecnicas Astronomicas

Fotometria fotografica: la fotometria astronomica es la disciplina encargada de la medicina de la intencidad luminosa de los objetos celestes.
Fotometria fotoelectrica polarimetros:Permite definir escalas de intencidad luminosa, indice de color, curvas de luz, variabilidad de estecas individuales

Dos tipos de telescopios


Un telescopio refractor: es un telescopio óptico que refleja imágenes de objetos lejanos utilizando un sistema de lentes convergentes en los que la luz se refracta. La refracción de la luz en la lente del objetivo hace que los rayos paralelos, procedentes de un objeto muy alejado (en el infinito), converjan sobre un punto del plano focal. Esto permite mostrar los objetos lejanos mayores y más brillantes.
Su funcionamiento es muy similar al de un
microscopio. Un refractor típico tiene dos lentes, una en el objetivo y otra en el ocular. Las curvaturas de la lentes y el material utilizado se diseñan para limitar al máximo el grado de aberración esférica y aberración cromática del instrumento.

Un telescopio reflector es un telescopio óptico que utiliza espejos en lugar de lentes para enfocar la luz y formar imágenes. No se sabe con certeza cuál es el primer telescopio reflector, pero la idea de la utilización de espejos cóncavos y convexos colocados en ángulos indicados para observar grandes regiones a grandes distancias, se le atribuye a Leonard Digges en su libro Pantometría. El libro póstumo fue completado y publicado por su hijo Thomas Digges en 1571. En 1636, Marin Mersenne, un religioso de la orden de los Mínimos, ideó un telescopio reflector que consistía en un espejo parabólico con un pequeño orificio frente a otro de menor tamaño de modo que la luz se reflejase hacia el ojo a través del orificio. En 1663 James Gregory tomó la idea de Mersenne y perfeccionó el telescopio agregando un pequeño espejo secundario cóncavo y elipsoidal que reflejase la luz procedente del espejo primario al segundo plano focal de la elipse, situado en el centro del agujero de éste, y de ahí al ocular. Sir Isaac Newton perfeccionó el telescopio reflector alrededor de 1670. Los telescopios reflectores evitan el problema de la aberración cromática, una degradación notable de las imágenes en los telescopios refractores de la época (posteriormente este problema se resolvió utilizando lentes acromáticas)

telescopios

Se denomina telescopio al instrumento óptico que permite ver objetos lejanos con mucho más detalle que a simple vista. Es herramienta fundamental de la astronomía, y cada desarrollo o perfeccionamiento del telescopio ha sido seguido de avances en nuestra comprensión del Universo.Gracias al telescopio —desde que Galileo en 1609 lo usó para ver a la Luna, el planeta Júpiter y las estrellas— pudo el ser humano empezar a conocer la verdadera naturaleza de los objetos astronómicos que nos rodean y nuestra ubicación en el UniversoCaracteristicas:El parámetro más importante de un telescopio es el diámetro de su "lente objetivo". Un telescopio de aficionado generalmente tiene entre 76 y 150 mm de diámetro y permite observar algunos detalles planetarios y muchísimos objetos del cielo profundo (cúmulos, nebulosas y algunas galaxias). Los telescopios que superan los 200 mm de diámetro permiten ver detalles lunares finos, detalles planetarios importantes y una gran cantidad de cúmulos, nebulosas y galaxias brillantes.Para caracterizar un telescopio y utilizarlo se emplean una serie de parámetros y accesorios:Distancia Focal: es la longitud focal del telescopio, que se define como la distancia desde el espejo o la lente principal hasta el foco o punto donde se sitúa el ocular. Diámetro del objetivo: diámetro del espejo o lente primaria del telescopio. Ocular: accesorio pequeño que colocado en el foco del telescopio permite magnificar la imagen de los objetos. Lente de Barlow: lente que generalmente duplica o triplica los aumentos del ocular cuando se observan los astros. Filtro: pequeño accesorio que generalmente opaca la imagen del astro pero que dependiendo de su color y material permite mejorar la observación. Se ubica delante del ocular, y los más usados son el lunar (verde-azulado, mejora el contraste en la observación de nuestro satélite), y el solar, con gran poder de absorción de la luz del Sol para no lesionar la retina del ojo. Razón Focal: es el cociente entre la distancia focal (mm) y el diámetro (mm). (f/ratio) Magnitud límite: es la magnitud máxima que teóricamente puede observarse con un telescopio dado, en condiciones de observación ideales. La fórmula para su cálculo es: m(límite) = 6,8 + 5log(D) (siendo D el diámetro en centímetros de la lente o el espejo del telescopio). Aumentos: La cantidad de veces que un instrumento multiplica el diámetro aparente de los objetos observados. Equivale a la relación entre la longitud focal del telescopio y la longitud focal del ocular (DF/df). Por ejemplo, un telescopio de 1000 mm de distancia focal, con un ocular de 10mm de df. proporcionará un aumento de 100 (se expresa también como 100X). Trípode: conjunto de tres patas generalmente metálicas que le dan soporte y estabilidad al telescopio. Portaocular: orificio donde se colocan el ocular, reductores o multiplicadores de focal (p.ej lentes de Barlow) o fotográficas.
Calendario gregoriano: El calendario juliano, a pesar de los años bisiestos, no se acercó lo suficiente a los ciclos astronómicos: el año-calendario promedio tenía 12 minutos más que el ciclo solar. Este error, al parecer insignificante, se fue acumulando y en 1093, por ejemplo, la primavera cayó el 15 de marzo, en vez del 21. Así, para el siglo XVI el error acumulado había provocado una diferencia en el ciclo anual natural de diez días completos. Para arreglar este error, el papa Gregorio XIII solicitó al astrónomo C. Clavius que proyectara un moderno calendario. En el año 1582, el pontífice promulgó una reforma al calendario juliano que obligaba a todos los países católicos a que del 4 de octubre siguiera el 15 de octubre, con lo cual se "perderían" diez días pero ganarían que el hombre volvería a estar en armonía con las estaciones. Además, esta misma reforma establecía que los años seculares no divisibles entre 400 (1700, 1800, etc.) ya no serían bisiestos. Esta mejora redujo el error anual a sólo 26 segundos, que suman un día cada 3,323 años. Finalmente, el papa repuso el 1 de enero como día de Año Nuevo. La Europa católica adoptó inmediatamente el nuevo calendario, pero los países protestantes se rehusaron a ello. Inglaterra y sus colonias aceptaron el calendario gregoriano hasta 1752, cuando quitaron 11 días a su año. Este hecho provocó motines en Londres, donde muchos indignados se lanzaron a las calles al grito de "queremos nuestros 11 días". En Estados Unidos, en cambio, Benjamín Franklin aconsejó con resignación a sus lectores que debían "acostarse tan tranquilos el dos de este mes,i despertar hasta la mañana del 14.Sin embargo, en Rusia, cuya iglesia cismática se separó de Roma antes del siglo XVI, conservó en uso el calendario juliano casi doscientos años más. En 1918, después de la revolución Bolchevique, el gobierno quitó 13 días al año para poner su calendario en concordancia con el de los demás países de Europa. La Iglesia Ortodoxa no aceptó la reforma de los bolcheviques y, hasta hoy, sigue el calendario juliano y celebra la Navidad el 7 de enero (según el calendario gregoriano).

Astronomia

Calendario
El calendario (del
latín calenda) es una cuenta sistematizada del tiempo para la organización de las actividades humanas. Antiguamente estaba basado en los ciclos lunares. En la actualidad, los diversos calendarios tienen base en el ciclo que describe la Tierra alrededor del Sol y se denominan calendarios solares. El calendario sideral se basa en el movimiento de otros astros diferentes al Sol.
El calendario solar es aquel calendario cuyos días indican la posición de la Tierra en su revolución entorno al Sol.
Los calendarios elaborados de esta forma poseen un año de 365 días, que se amplia normalmente agregando un día extra en los
años bisiestos.
El primer calendario solar fue el
calendario egipcio, tras una reforma que sustituyó por éste el tradicional calendario lunar. El calendario solar fue adoptado posteriormente por el calendario juliano, antecedente del calendario gregoriano.
Calendario Lunar: se basa en el ciclo de las fases de la luna,llamada lunacio. El año cubre exactamente 12 lunaciones y se divide en 12 meses contando alternativamente con la duracion de una lunacion.Suma en definitiva 364 o 365 dias .Ademas todos los años ,los meses,se desfasan de 11 dias con respecto al rito de las estaciones: en 3 años el defase es de 1 mes.
Calendario Musulman: Es de tipo lunar, cada año se desafa de 10 a 12 dias con respecto al calendario gregoriano.
Los antiguos egipcios utilizaban el calendario lunar asociado a las crecidas del rio Nilo; el año se ldividia en 3 divisiones: Arket(inundacion), Peret(invierno) y Shemou(segura estival)

Astronomia

Definición
La astronomía como ciencia estudia la estructura, composición y proceso de los cuerpos celestes. Es decir tiene que ver con el estudio de los planetas, estrellas, galaxias, cuásares, meteoritos, nebulosas, cometas, etc.
La Astronomía se divide en diferentes ramas: La Astrofísica que es una ciencia que estudia el origen, evolución y destino final de los cuerpos celestes, de acuerdo a las leyes físicas que lo rigen. Los astrofísicos analizan las medidas de radiación electromagnética y como se producen y son emitida por los objetos; La Astrometría que estudia las distintas posiciones y movimientos de los astros; La Mecánica celeste y la Cosmología (estudio del Universo como un todo, es decir la estructura del Universo); La Radioastronomía, es un área de la astronomía que mide y analiza la emisión de radiación electromagnética de los cuerpos celestes.
Ramas de la Astronomia
Debido a la amplitud de su objeto de estudio la Astronomía se divide en diferentes ramas. Aquellas ramas no están completamente separadas. La astronomía se encuentra dividida en cuatro grandes ramas:
Astronomía de posición. Tiene por objeto situar en la esfera celeste la posición de los astros midiendo determinados ángulos respecto a unos planos fundamentales, utilizando para ello diferentes sistemas de coordenadas astronómicas. Es la rama más antigua de esta ciencia. Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. También estudia el movimiento diurno y el movimiento anual del Sol y las estrellas. Incluye la descripción de cada uno de los planetas, asteroides y satélites del Sistema Solar. Son tareas fundamentales de la misma la determinación de la hora y la determinación para la navegación de las coordenadas geográficas.
Mecánica celeste. Tiene por objeto interpretar los movimientos de la astronomía de posición, en el ámbito de la parte de la física conocida como mecánica, generalmente la newtoniana (Ley de la Gravitación Universal de Isaac Newton). Estudia el movimiento de los planetas alrededor del Sol, de sus satélites, el cálculo de las órbitas de cometas y asteroides. El estudio del movimiento de la Luna alrededor de la Tierra fue por su complejidad muy importante para el desarrollo de la ciencia. El movimiento extraño de Urano, causado por las perturbaciones de un planeta hasta entonces desconocido, permitió a Le Verrier y Adams descubrir sobre el papel al planeta Neptuno. El descubrimiento de una pequeña desviación en el avance del perihelio de Mercurio se atribuyó inicialmente a un planeta cercano al Sol hasta que Einstein la explicó con su Teoría de la Relatividad.
Astrofísica. Es una parte moderna de la astronomía que estudia los astros como cuerpos de la física estudiando su composición, estructura y evolución. Sólo fue posible su inicio en el siglo XIX cuando gracias a los espectros se pudo averiguar la composición física de las estrellas. Las ramas de la física implicadas en el estudio son la física nuclear (generación de la energía en el interior de las estrellas) y la física de la relatividad. A densidades elevadas el plasma se transforma en materia degenerada; esto lleva a algunas de sus partículas a adquirir altas velocidades que deberán estar limitadas por la velocidad de la luz, lo cual afectará a sus condiciones de degeneración. Asimismo, en las cercanías de los objetos muy masivos, estrellas de neutrones o agujeros negros, la materia que cae se acelera a velocidades relativistas emitiendo radiación intensa y formando potentes chorros de materia.
Cosmología. Es la rama de la astronomía que estudia los orígenes, estructura, evolución y nacimiento del universo en su conjunto.
Astrometría. Estudio de la posición de los objetos en el cielo y su cambio de posición. Define el sistema de coordenadas utilizado y la cinemática de los objetos en nuestra galaxia.
Astrofísica. Estudio de la física del universo, incluyendo las propiedades de objetos astronómicos (luminosidad, densidad, temperatura, composición química).
Cosmología. Estudio del origen del universo y su evolución. El estudio de la cosmología es la máxima expresión de la astrofísica teórica.
Formación y evolución de las galaxias. Estudio de la formación de galaxias y su evolución.
Astronomía galáctica. Estudio de la estructura y componentes de nuestra galaxia y de otras.
Astronomía extragaláctica. Estudio de objetos fuera de la Vía Láctea.
Astronomía estelar. Estudio de las estrellas, su nacimiento, evolución y muerte.
Evolución estelar. Estudio de la evolución de las estrellas desde su formación hasta su muerte como un despojo estelar.
Formación estelar. Estudio de las condiciones y procesos que llevan a la formación de estrellas en el interior de nubes de gas.

Esfera Celeste
La esfera celeste es una esfera ideal, sin radio definido, concéntrica en el globo terrestre, en la cual aparentemente se mueven los astros. Permite representar las direcciones en que se hallan los objetos celestes; así es como el ángulo formado por dos direcciones será representado por un arco de círculo mayor sobre esa esfera. Teóricamente se confunde con el de la Tierra: el Eje del mundo es el de rotación de la esfera celeste y es coincidente con el eje de rotación de la Tierra, por lo que se halla prácticamente centrada en el ojo del observador. Los astrónomos fundan sus mediciones en la existencia, en esa esfera, de puntos, círculos y planos convencionales: el plano del horizonte y el del ecuador celeste; el polo y el cenit; el meridiano, que sirve de origen para la medición del acimut.
Cuando el horizonte del espectador es oblicuo con respecto al ecuador, la esfera celeste es calificada de oblicua. Para un observador situado en uno de los dos polos, la esfera es paralela, ya que su horizonte conserva paralelismo con el ecuador. Por último, la esfera es recta para el observador situado en la línea equinoccial, porque allí el horizonte corta perpendicularmente el ecuador.
La esfera celeste es un concepto no un objeto, es la superficie virtual sobre la que vemos proyectados a los astros como si todos estuvieran a igual distancia de la tierra.

El movimiento diurno :es el movimiento de la esfera celeste observado en el transcurso de un día. Es un movimiento retrógrado, de sentido horario mirando hacia el Sur, y de sentido antihorario mirando hacia el Norte.
Los únicos puntos de la esfera celeste que permanecen fijos son los polos celestes; todos los demás, y las estrellas con ellos parecen girar en círculos concéntricos alrededor de aquéllos. El polo norte celeste está situado sobre el punto cardinal norte a una altura que coincide con la latitud del observador. En el polo norte un observador vería la estrella polar en el cenit. Para un observador situado en el ecuador terrestre, el polo norte está sobre el horizonte. A latitudes intermedias, por ejemplo a 40º, el polo celeste se encuentra a una altura de 40º sobre el horizonte.
Entre las estrellas más próximas al polo norte, la más fácilmente visible es la
estrella polar, que se encuentra a un grado de éste, y describiendo un círculo alrededor de él. El radio de dicho círculo es unas dos veces el diámetro angular nuestra Luna.
Se llaman
estrellas circumpolares para una determinada latitud aquellas estrellas que describen un círculo completo alrededor del polo celeste sin quedar bajo el horizonte en ningún momento, por lo que son siempre visibles.
El resto de las estrellas incluido el
Sol y los planetas describen sólo parte de un círculo, cortando al horizonte en dos puntos: el orto y el ocaso.
En este movimiento diurno las estrellas conservan sus posiciones participando toda la esfera celeste de dicho movimiento.

Coordenadas celestes:son el conjunto de valores que, de acuerdo con un determinado sistema de referencia, dan la posición de un objeto en la esfera celeste. Existen diversas coordenadas celestes según cuál sea su origen y plano de referencia. Una primera clasificación, en dos grandes grupos, atiende si se trata de coordenadas cartesianas o coordenadas esféricas.
Según la posición del observador:
Coordenadas locales, Coordenadas horizontales y Coordenadas horarias
Coordenadas no locales, Coordenadas ecuatoriales, Coordenadas eclípticas, Coordenadas galácticas.
Considerando el plano de referencia se tienen:
Coordenadas horizontales: Plano de referencia: el horizonte del observador
Origen: topocéntrico
Coordenadas:
azimut y altura o distancia cenital
Coordenadas horarias: Plano de referencia: el ecuador celeste y el meridiano celeste del observador
Origen: topocéntrico
Coordenadas:
ángulo horario y declinación
Coordenadas ecuatoriales: Plano de referencia: el ecuador celeste
Origen: geocéntrico
Coordenadas:
ascensión recta y declinación
Coordenadas eclípticas: Plano de referencia: la eclíptica
Origen: geocéntrico o heliocéntrico
Coordenadas:
longitud celeste y latitud celeste, o longitud y latitud eclípticas
Coordenadas galácticas: Plano de referencia: el plano de la Vía Láctea
Origen: el centro de la Vía Láctea
Coordenadas: longitud galáctica y latitud galáctica